150 research outputs found

    Structuring cooperative nuclear risk reduction initiatives with China

    Get PDF
    The Stanford Center for International Security and Cooperation engaged several Chinese nuclear organizations in cooperative research that focused on responses to radiological and nuclear terrorism. The objective was to identify joint research initiatives to reduce the global dangers of such threats and to pursue initial technical collaborations in several high priority areas. Initiatives were identified in three primary research areas: 1) detection and interdiction of smuggled nuclear materials; 2) nuclear forensics; and 3) radiological (“dirty bomb”) threats and countermeasures. Initial work emphasized the application of systems and risk analysis tools, which proved effective in structuring the collaborations. The extensive engagements between national security nuclear experts in China and the U.S. during the research strengthened professional relationships between these important communities.Project on Advanced Systems and Concepts for Countering Weapons of Mass Destruction (PASCC)Grant Number N00244-14-I-003

    Building an intelligent tutoring system for procedural domains

    Get PDF
    Jobs that require complex skills that are too expensive or dangerous to develop often use simulators in training. The strength of a simulator is its ability to mimic the 'real world', allowing students to explore and experiment. A good simulation helps the student develop a 'mental model' of the real world. The closer the simulation is to 'real life', the less difficulties there are transferring skills and mental models developed on the simulator to the real job. As graphics workstations increase in power and become more affordable they become attractive candidates for developing computer-based simulations for use in training. Computer based simulations can make training more interesting and accessible to the student

    Reimagining Heliophysics: A bold new vision for the next decade and beyond

    Full text link
    The field of Heliophysics has a branding problem. We need an answer to the question: ``What is Heliophysics\?'', the answer to which should clearly and succinctly defines our science in a compelling way that simultaneously introduces a sense of wonder and exploration into our science and our missions. Unfortunately, recent over-reliance on space weather to define our field, as opposed to simply using it as a practical and relatable example of applied Heliophysics science, narrows the scope of what solar and space physics is and diminishes its fundamental importance. Moving forward, our community needs to be bold and unabashed in our definition of Heliophysics and its big questions. We should emphasize the general and fundamental importance and excitement of our science with a new mindset that generalizes and expands the definition of Heliophysics to include new ``frontiers'' of increasing interest to the community. Heliophysics should be unbound from its current confinement to the Sun-Earth connection and expanded to studies of the fundamental nature of space plasma physics across the solar system and greater cosmos. Finally, we need to come together as a community to advance our science by envisioning, prioritizing, and supporting -- with a unified voice -- a set of bold new missions that target compelling science questions - even if they do not explore the traditional Sun- and Earth-centric aspects of Heliophysics science. Such new, large missions to expand the frontiers and scope of Heliophysics science large missions can be the key to galvanizing the public and policymakers to support the overall Heliophysics program

    The Long-Baseline Neutrino Experiment: Exploring Fundamental Symmetries of the Universe

    Get PDF
    The preponderance of matter over antimatter in the early Universe, the dynamics of the supernova bursts that produced the heavy elements necessary for life and whether protons eventually decay --- these mysteries at the forefront of particle physics and astrophysics are key to understanding the early evolution of our Universe, its current state and its eventual fate. The Long-Baseline Neutrino Experiment (LBNE) represents an extensively developed plan for a world-class experiment dedicated to addressing these questions. LBNE is conceived around three central components: (1) a new, high-intensity neutrino source generated from a megawatt-class proton accelerator at Fermi National Accelerator Laboratory, (2) a near neutrino detector just downstream of the source, and (3) a massive liquid argon time-projection chamber deployed as a far detector deep underground at the Sanford Underground Research Facility. This facility, located at the site of the former Homestake Mine in Lead, South Dakota, is approximately 1,300 km from the neutrino source at Fermilab -- a distance (baseline) that delivers optimal sensitivity to neutrino charge-parity symmetry violation and mass ordering effects. This ambitious yet cost-effective design incorporates scalability and flexibility and can accommodate a variety of upgrades and contributions. With its exceptional combination of experimental configuration, technical capabilities, and potential for transformative discoveries, LBNE promises to be a vital facility for the field of particle physics worldwide, providing physicists from around the globe with opportunities to collaborate in a twenty to thirty year program of exciting science. In this document we provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess.Comment: Major update of previous version. This is the reference document for LBNE science program and current status. Chapters 1, 3, and 9 provide a comprehensive overview of LBNE's scientific objectives, its place in the landscape of neutrino physics worldwide, the technologies it will incorporate and the capabilities it will possess. 288 pages, 116 figure
    corecore